-
1 система регистрации способом переменной плотности (сейсм.)
система регистрации способом переменной плотности (сейсм.)
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > система регистрации способом переменной плотности (сейсм.)
-
2 система для регистрации способом переменной плотности
Geophysics: variable-density recording systemУниверсальный русско-английский словарь > система для регистрации способом переменной плотности
-
3 система регистрации способом переменной плотности
Seismology: variable-density recording systemУниверсальный русско-английский словарь > система регистрации способом переменной плотности
-
4 скорость записи
1. recording speed2. write speed3. writing rate4. writing speedселективная запись; выборочная запись — selective writing
5. recording rateзапись на перфокарты; запись на перфокарте — card recording
лист, используемый для записи информации — recording sheet
-
5 De Forest, Lee
SUBJECT AREA: Broadcasting, Electronics and information technology, Photography, film and optics, Recording, Telecommunications[br]b. 26 August 1873 Council Bluffs, Iowa, USAd. 30 June 1961 Hollywood, California, USA[br]American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.[br]De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.[br]Principal Honours and DistinctionsInstitute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.Bibliography1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.Further ReadingG.Carneal, 1930, A Conqueror of Space (biography).I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.KF / JW -
6 система записи звука по методу переменной плотности
Engineering: variable-density film recording systemУниверсальный русско-английский словарь > система записи звука по методу переменной плотности
-
7 система интенсивной записи звука
Engineering: variable-density film recording systemУниверсальный русско-английский словарь > система интенсивной записи звука
См. также в других словарях:
History of sound recording — Methods and media for sound recording are varied and have undergone significant changes between the first time sound was actually recorded for later playback until now. Technology Mechanical recording The first devices for recording sound were… … Wikipedia
Comparison of analog and digital recording — This article compares the two ways in which sound is recorded and stored. Actual sound waves consist of continuous variations in air pressure. Representations of these signals can be recorded using either digital or analog techniques. An analog… … Wikipedia
Movietone sound system — The Movietone sound system is a sound on film method of recording sound for motion pictures that guarantees synchronization between sound and picture. It achieves this by recording the sound as a variable density optical track on the same strip… … Wikipedia
IBM System/360 — The IBM System/360 (S/360) is a mainframe computer system family announced by IBM on April 7, 1964. It was the first family of computers making a clear distinction between architecture and implementation, allowing IBM to release a suite of… … Wikipedia
nervous system — Anat., Zool. 1. the system of nerves and nerve centers in an animal or human, including the brain, spinal cord, nerves, and ganglia. 2. a particular part of this system. Cf. autonomic nervous system, central nervous system, peripheral nervous… … Universalium
Embedded system — Picture of the internals of an ADSL modem/router. A modern example of an embedded system. Labelled parts include a microprocessor (4), RAM (6), and flash memory (7). An embedded system is a computer system designed to do one or a few dedicated… … Wikipedia
система регистрации способом переменной плотности (сейсм.) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN variable density recording system … Справочник технического переводчика
sound track — ▪ recording in motion picture technology, narrow band, usually along the margin of the film, that carries the photographic or magnetic sound record. In optical recording (optical sound recording) systems, sound waves modulate a beam of… … Universalium
Oscar/Technische Verdienste — Der Oscar für technische Verdienste (Academy Technical Achievement Award) ist eine seit 1931 vergebenene Auszeichnung der Academy of Motion Picture Arts and Sciences und würdigt herausragende Leistungen auf dem Gebiet der Verbesserung technischer … Deutsch Wikipedia
Sound film — … Wikipedia
motion-picture technology — Introduction the means for the production and showing of motion pictures. It includes not only the motion picture camera and projector but also such technologies as those involved in recording sound, in editing both picture and sound, in… … Universalium